Thermal Equilibrium and Test Protocol for 8mm and 4mm DSR Measurements

Dr. David A. Anderson Professor Emeritus, Penn State

> Gerald Reinke Andrew Hanz *MTE Services, Inc.*

Mike Anderson The Asphalt Institute J. Michael Farrar Western Research Institute

> Gaylon Baumgardner Sonia Serna Paragon

Matthew Corrigan, P.E. Federal Highway Administration

FHWA Asphalt Binder ETG Baton Rouge, LA September 16-17, 2014

Background

High stiffness rheological measurements with 4 mm parallel plate geometry (PP) is a recent concept Championed initially by WRI, picked up by others Attractive as result of General availability of more sophisticated rheometers ✓ Improvements in analytical tools that facilitate more sophisticated data analysis ✓ Increased interest in basic rheology as a routine tool for specifying and characterizing asphalt Adoption of 4 mm PP for specification use will require an extension of the current DSR test method

Historical -**Rheological measurements SHRP era** Mid to Upper Temperature – DSR PP ✓ Early DSR's in common use had were less robust and lacked normal force capability ✓ ASTM D7175/AASHTO T315 limited measurements to range where 100 Pa > G^* < 100 MPa ✓ Parallel plate geometry limited by machine compliance and resolution Lower Temperature - BBR and DTT ✓ BBR 30 MPa to 1 GPa ✓ DSR torsion bar research tool, not practical for spec use ✓ DTT to characterize brittle, brittle-ductile failure

Slide -3-

Recommendations from SHRP 370

 $\Box G^* < 1 kPa$ ✓ 50-mm PP □ 1.0 kPa < G* < 100 kPa ✓ 25-mm PP with a 1-mm gap □ 0.1 MPa < G* < 30 MPa ✓ 8-mm PP with a 2-mm □ G* > 30 MPa ✓ Bending beam rheometer ✓ Torsion bar geometry when

Rheological measurements - Capability

- 1. Upper temperature 25 mm PP: OK
- 2. Intermediate temperature 8 mm PP: repeatability issue
- 3. Lower temperature BBR: OK

Property	d2s, % *		
	Within	Between	
DSR, 25 mm, Tank	6.4	17.0	
DSR, 25 mm, Original	9.0	22.0	
DSR, 8 mm, PAV	13.8	40.2	
BBR, S(60), PAV	7.2	17.8	
BBR, m(60), PAV	2.9	6.8	

^{*}Difference at which 2 test results are suspect

4. Capabilities of 4 mm PP geometry are unknown

Task force scope

To provide guidance for the development of 4 mm PP geometry as a tool for specification testing ✓ Test development and refinement ✓ Ruggedness testing Identifying path for and facilitating technology transfer Recommendations for a round robin program ✓ Extending findings to 8 mm PP Scope does not include protocols for using test data ✓ Acceptance and material specification requirements based on 4 mm PP beyond our scope Executing RR beyond our scope and resources

Task Force work plan

Step 1: Develop testing protocol that is appropriate for routine use and that provides data of acceptable accuracy and precision(repeatability) ✓ Prepare for ruggedness testing ✓ 8 and 4 mm PP geometry □ Step 2: Conduct ruggedness testing ✓ More robust than typical ruggedness rest ✓ Include more than one laboratory Step 3: Conduct round robin Only when have sufficient number of laboratories on-line "Technology transfer" part of task force mission

Task Force - Specific Work Elements

Step 1: Develop recommended testing protocol based on limited laboratory testing

- ✓ Instrument standardization
- ✓ Specimen preparation
- Specimen conditioning thermal equilibrium and physical hardening
- ✓ Verification of data integrity
- Provide rationale for protocol based on test results

□ Step 1 result:

✓ Prepare for formal ruggedness testing

✓ Define minimum requirements for suitable rheometers!

Slide -8-

Step 1: Specific issues to be addressed

Issues grouped by category

- 1. Instrument verification-standardization
- 2. Specimen preparation
- 3. Conditioning prior to testing
- 4. Testing sequence
- 5. Linearity region
- 6. Data quality

Resolution of above issues depends on use of data

- ✓ Point values for specification use?
- ✓ Calculated parameter for specification use?
- ✓ Use by producer for QC?

✓ Mastercurve or model manipulation?

1. Issues – Verification/Standardization

Torque Transducer

- ✓ Verify with reference fluid at ambient temperature
- Current practice using 25 mm plate at ambient temperature covers needed torque range
- Angular displacement transducer
 - ✓ Not performed in user laboratory
- Temperature transducer
 - ✓ 25 mm diameter wafer (thermistor/platinum film)
 - ✓ Questionable for 8 mm PP, Unacceptable for 4 mm PP
- Machine compliance
 - ✓ Instrument and fixture specific

2. Issues - Specimen preparation

Placement of sample on plates – requires new protocol ✓ Adhesion primary concern ✓ Requires heat at binder-plate interface ✓ Significant for 8 mm, Critical for 4 mm Trimming – Current protocol with more care ✓ Hot knife/scraping tool/torch or heat gun Bulge and specimen dimensions – requires new protocol Temperature at which bulge and final gap is formed ✓ Control of normal forces during final closure Two protocols: WRI and MTE ✓ Primary difference in bulge formation ✓ Two procedures need to be refined and evaluated

Slide -11-

MTE Protocol

- Place sample on the end of warm spatula.
- Heat upper and lower plate with a small torch.
- Press specimen on the bottom plate so that it adheres to the bottom plate.
- □ Lower the upper plate so that it is embedded in the test specimen so gap is \approx 3,000 µm, initial trim at \approx 10°C.
- □ Reduce gap to \approx 3,000 µm at \approx 1°C for final trimming
- □ Close to final gap at ≈1°C
- Note: Normal force is controlled during process of trimming and gap closure

MTE - Photographs

Slide -13-

WRI Protocol

Using direct transfer of warm binder with spatula ✓ Scoop annealed sample with spatula, no silicone mold Heat sample on spatula with heat gun to transfer to lower plate ✓ Smear residue remaining on spatula on upper plate □ Loading and trim at 50°C - 60°C with 2 mm gap Closing Bulge at 30°C to 1.75 mm Cool to test temperature ✓ Automatic adjust gap to control normal forces ✓ Final gap will vary – calculate on actual gap

WRI Photographs

3. Issues - Conditioning prior to testing

Wait time

- Need to establish time increment required to reach specimen thermal equilibrium once DSR reaches thermal equilibrium
- Above increment plus "cushion" = wait time
 Use protocol established for 8 and 25 mm plates
- \checkmark Times for 4 mm similar to 8 and 25 mm plates, <u>+</u> 2 min
- Physical hardening?
 - Considered with BBR and needs to be resolved for PP
 - Appears to be rheometer –specific
 - Being evaluated as part of wait time considerations

Slide -16-

Protocol for establishing wait time

New procedure added to AASHTO 315 Monitor G* vs. time Constant G* \rightarrow Specimen thermal equilibrium

Slide -17-

4. Issues - Testing Sequence

Temperature sequencing

- Cool to highest test temperature in test sequence, decrease temperature to lower temperatures
- Cool to lowest test temperature in test sequence, increase temperature to higher temperatures
- Two sequences yield different test data, data quality

5. Issues – Linear region

Protocol is based on linear behavior

- How do we ensure linear behavior?
- ✓ Specify strain limits?
- Perform strain sweeps?
- Specify strain as function of modulus

MEDIAN			
COMPLEX	MEDIAN	MTE	WRI
MODULUS,	TORQUE,	TARGET	TARGET
Ра	µN∙m	% STRAIN	% STRAIN
1.22E+09	680	0.005	0.0015
9.60E+08	540	0.005	0.0025
5.60E+08	1738	0.02	0.005
2.50E+08	1625	0.05	0.02
8.40E+07	1125	0.1	0.075
2.20E+07	590	0.2	0.25
5.20E+06	670	1	1
1.20E+06	300	2	2.5
3.00E+05	135	4	5
8.20E+04	50	5	10
2.00E+04	50	6	30
	COMPLEX MODULUS, Pa 1.22E+09 9.60E+08 5.60E+08 2.50E+08 8.40E+07 2.20E+07 5.20E+06 1.20E+06 3.00E+05 8.20E+04	COMPLEXMEDIANMODULUS,TORQUE,PaμN·m1.22E+096809.60E+085405.60E+0817382.50E+0816258.40E+0711252.20E+066705.20E+063003.00E+051358.20E+0450	COMPLEXMEDIANMTEMODULUS,TORQUE,TARGETPaμN·m% STRAIN1.22E+096800.0059.60E+085400.0055.60E+0817380.022.50E+0816250.12.20E+075900.25.20E+0667011.20E+0730023.00E+0513548.20E+04505

Slide -19-

6. Issues: Verifying data integrity

- □ Fall-off in G* with strain in strain sweep
- Lissajous Figures in isothermal test with varying frequency
- First and third Harmonics in isothermal test with varying frequency
- Not looking at Black Space or mastercurve construction at this point
 - ✓ Subject for later follow-on studies

Lissajous Figures

Slide -21-

Harmonic Analysis

Manfred Wilhelm
 Analysis of harmonics
 Used ratio of 1st and 3rd to validate data integrity
 Patented analysis???

Wilhelm, M., Macromolecular Materials and Engineering 2002, 287, No. 2

Slide -22-

Results Step 1 – Testing Protocol

Machine compliance Resolved - Responsibility on manufacturer Sample preparation protocol ✓ In progress ✓ (2 Binders) x (WRI-MTE Protocols) x (Gap vs. Normal Control) x (3 Labs/Manufacturers) Temperature sequencing ✓ Upcoming Protocol for evaluating data integrity ✓ Upcoming

Slide -23-

Specific Work Elements, cont'd

2nd Step: Ruggedness Testing Develop testing plan Conduct plan using resources of Task Force □ 3rd Step: Round-Robin Testing Develop testing plan ✓ Need more players to execute Training element ✓ Many will need to "step up" proficiency to use 4 mm PP ✓ Formal means of technology transfer will be required

Summary – Expected results

Recommended protocol for using 4 mm and 8 mm PP geometry in dynamic shear Testing protocols in specification format ✓ Equipment requirements Ruggedness testing program ✓ Expect to include rheometers from 3 manufacturers Somewhat more robust than typical ruggedness program Recommendations for training ✓ Needed before round robin to develop sufficient number of laboratories for robust round robin Round robin recommendations

Expanded Working Group

□ Tom Bennert — Rutgers □ Kriz Pavel — BSA - Asphalt Ed Trujillo — CODOT Horst Winter — UMass Olli-Ville Laukkanen — UMass Three rheometer manufacturers ✓ Intimately involved to date ✓ Cooperation is greatly appreciated Group will be expanded slowly as work of task force continues

Slide -26-